Residual Shuffling Convolutional Neural Networks for Deep Semantic Image Segmentation Using Multi-Modal Data

Kaiqiang Chen^{1,2,*}, Michael Weinmann³, Xin Gao¹, Menglong Yan¹, Stefan Hinz⁴, Boris Jutzi⁴, Martin Weinmann^{4,*}

¹Key Laboratory of Spatial Information Processing and Application System Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, P.R. China

²University of Chinese Academy of Sciences, Beijing, P.R. China

³Institute of Computer Science II, University of Bonn, Bonn, Germany

⁴Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology, Karlsruhe, Germany

*Corresponding authors:

Kaiqiang Chen: chenkaiqiang14@mailto:ucas.ac.cn

Martin Weinmann: <u>martin.weinmann@kit.edu</u>

Brief summary of the applied methodology:

- 1) Feature extraction:
 - Radiometric features
 (IR, R, G, NDVI, and 4 modified variants of these)
 - Geometric features
 (8 local 3D shape features derived from the 3D structure tensor)

2) Supervised classification:

Residual Shuffling Convolutional Neural Network (RSCNN)
 (combines the characteristics of a Residual Network with the advantages of atrous convolution and a shuffling operator)

The corresponding paper has been submitted for publication in the *ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences* and is currently under review.